Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113889, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416646

RESUMO

The mystery of appendage regeneration has fascinated humans for centuries, while the underlying regulatory mechanisms remain unclear. In this study, we establish a transcriptional landscape of regenerating leg in the American cockroach, Periplaneta americana, an ideal model in appendage regeneration studies showing remarkable regeneration capacity. Through a large-scale in vivo screening, we identify multiple signaling pathways and transcription factors controlling leg regeneration. Specifically, zfh-2 and bowl contribute to blastema cell proliferation and morphogenesis in two transcriptional cascades: bone morphogenetic protein (BMP)/JAK-STAT-zfh-2-B-H2 and Notch-drm/bowl-bab1. Notably, we find zfh-2 is working as a direct target of BMP signaling to promote cell proliferation in the blastema. These mechanisms might be conserved in the appendage regeneration of vertebrates from an evolutionary perspective. Overall, our findings reveal that two crucial transcriptional cascades orchestrate distinct cockroach leg regeneration processes, significantly advancing the comprehension of molecular mechanism in appendage regeneration.


Assuntos
Baratas , Animais , Humanos , Fatores de Transcrição , Morfogênese
2.
Cell Regen ; 12(1): 9, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36859631

RESUMO

Regeneration, as a fascinating scientific field, refers to the ability of animals replacing lost tissue or body parts. Many metazoan organisms have been reported with the regeneration phenomena, but showing evolutionarily variable abilities. As the most diverse metazoan taxon, hundreds of insects show strong appendage regeneration ability. The regeneration process and ability are dependent on many factors, including macroscopic physiological conditions and microscopic molecular mechanisms. This article reviews research progress on the physiological conditions and internal underlying mechanisms controlling appendage regeneration in insects.

3.
Metab Brain Dis ; 38(2): 453-466, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36094724

RESUMO

Maintaining the balance of mitochondrial fission and mitochondrial autophagy on seizures is helpful to find a solution to control seizures and reduce brain injuries. The present study is to investigate the protective effect of inhibiting mitochondrial fission on brain injury in juvenile rat epilepsy induced by pentatetrazol (PTZ) by inhibiting the BCL2L13/LC3-mediated mitophagy pathway. PTZ was injected (40 mg/kg) to induce kindling once every other day, for a total of 15 times. In the PTZ + DMSO (DMSO), PTZ + Mdivi-1 (Mdivi-1), and PTZ + WY14643 (WY14643) groups, rats were pretreated with DMSO, Mdivi-1 and WY14643 for half an hour prior to PTZ injection. The seizure attacks of young rats were observed for 30 min after model establishment. The Morris water maze (MWM) was used to test the cognition of experimental rats. After the test, the numbers of NeuN(+) neurons and GFAP(+) astrocytes were observed and counted by immunofluorescence (IF). The protein expression levels of Drp1, BCL2L13, LC3 and caspase 3 in the hippocampus of young rats were detected by immunohistochemistry (IHC) and Western blotting (WB). Compared with the PTZ and DMSO groups, the seizure latency in the Mdivi-1 group was longer (P < 0.01), and the severity degree and frequency of seizures were lower (P < 0.01). The MWM test showed that the incubation periods of crossing the platform in the Mdivi-1 group was significantly shorter. The number of platform crossings, the platform stay time, and the ratio of residence time/total stay time were significantly increased in the Mdivi-1 group (P < 0.01). The IF results showed that the number of NeuN(+) neurons in the Mdivi-1 group was greater, while the number of GFAP(+) astrocytes was lower. IHC and WB showed that the average optical density (AOD) and relative protein expression levels of Drp1, BCL2L13, LC3 and caspase 3 in the hippocampi of rats in the Mdivi-1 group were higher (P < 0.05). The above results in the WY14643 group were opposite to those in the Mdivi-1 group. Inhibition of mitochondrial fission could reduce seizure attacks, protect injured neurons, and improve cognition following PTZ-induced epilepsy by inhibiting mitochondrial autophagy mediated by the BCL2L13/LC3 mitophagy pathway.


Assuntos
Lesões Encefálicas , Epilepsia , Dinâmica Mitocondrial , Animais , Ratos , Caspase 3/metabolismo , Dimetil Sulfóxido/efeitos adversos , Epilepsia/metabolismo , Hipocampo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitofagia , Pentilenotetrazol/farmacologia , Convulsões/induzido quimicamente , Excitação Neurológica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
4.
Bioresour Technol ; 279: 339-349, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30737066

RESUMO

Given the aggravated greenhouse effect caused by CO2 and the current energy shortage, CO2 capture and reuse has been gaining ever-increasing concerns. Microbial Electrolysis Cells (MECs) has been considered to be a promising alternative to recycle CO2 bioelectrochemically to low-carbon electrofuels such as CH4 by combining electroactive microorganisms with electrochemical stimulation, enabling both CO2 fixation and energy recovery. In spite of the numerous efforts dedicated in this field in recent years, there are still many problems that hinder CO2 bioelectroconversion technique from the scaling-up and potential industrialization. This review comprehensively summarized the working principles, extracellular electron transfers behaviors, and the critical factors limiting the wide-spread utilization of CO2 electromethanogenesis. Various characterization and electrochemical testing methods for helping to uncover the underlying mechanisms in CO2 electromethanogenesis have been introduced. In addition, future research needs for pushing forward the development of MECs technology in real-world CO2 fixation and recycling were elaborated.


Assuntos
Dióxido de Carbono/química , Metano/química , Fontes de Energia Bioelétrica , Carbono/química , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Técnicas Eletroquímicas/métodos , Eletrólise/métodos , Metano/metabolismo
5.
Bioresour Technol ; 266: 382-388, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29982061

RESUMO

Each carbon-based material, due to the discrepancy in critical properties, has distinct capability to enrich electroactive microbes able to electrosynthesize methane from CO2. To optimize electromethanogenesis process, this study physically prepared and examined several carbon-based cathode materials: carbon stick (CS), CS twined by Ti wire (CS-Ti) or covered with carbon fiber (CS-CF), graphite felt (CS-GF) and carbon cloth (CS-CC). CS-GF electrode had constantly stable methane production (75.8 mL/L/d at -0.9 V vs. Ag/AgCl) while CS-CC showed a suppressed performance over time caused by the desposition of inorganic shell. Electrode material properties affected biofilms growth, cell-electrode contact behaviors and electron exchange. Methane formation with CS-CC biocathode was H2-concnetration dependent; CS-GF cathode possessed high antifouling properties and extensive space, enriching the microorganisms capable of catalyzing electromethanogenesis through more efficient non-H2 route. This study re-interpreted the application potentials of carbon-based materials in CO2 electroreduction and electrofuel recovery, providing valuable guidance for materials' selection.


Assuntos
Fontes de Energia Bioelétrica , Dióxido de Carbono , Metano/síntese química , Carbono , Eletrodos , Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...